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H I G H L I G H T S  

• Provides a social-ecological systems (SES) approach for assessing drivers of cannabis production at a development frontier. 
• Farmer interviews inform potential spatial drivers for cannabis production. 
• Models demonstrate importance of interview-derived covariates for cannabis land use. 
• Interdisciplinary approach contributes to deeper understanding of agricultural land use and community dynamics.  
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A B S T R A C T   

Integrating social or cultural data into ecological models is critical for understanding complex social-ecological 
systems. In this study, we used an interdisciplinary approach to identify, assess, and contextualize possible 
drivers of farmer decisions to use land for cannabis production and development shortly after adult use of 
cannabis was legalized in Josephine County, Oregon. First, we interviewed 14 cannabis farmers about their 
relationship with the land, their land use decision making process, and reflections on the local industry. Second, 
we identified recurring responses in farmer interviews that highlighted perceived social and geographic drivers 
of cannabis land use distribution and change. Finally, we quantified these drivers as spatial covariates and 
evaluated their value as predictors in three models: 1) logistic regression of cannabis land use distribution post 
legalization (2016); 2) logistic regression of cannabis development from pre- to post-legalization (2013/2014 to 
2016); and 3) linear regression of existing farm plant count change from pre- to post-legalization. We assessed 
the relationship of covariates with the model output and contextualized their patterns using the interview data. 
We found that most of the interview-derived covariates were significantly associated with cannabis distribution 
and development, including parcel size, human footprint, distance to nearest cannabis farm, density of local 
cannabis production, clearable land cover, farm zoning, elevation, roughness, and distance to rivers. These re-
sults provide useful insights into the dynamics of a rapid land use change frontier in a formalizing sector, as well 
as its potential environmental repercussions. The contextualized understanding of cannabis land use drivers may 
serve to mitigate environmental harm or predict changes occurring in other rural cannabis systems.   

1. Introduction 

“Money actually does grow on trees out here, and that’s a blessing.” 
– Josephine County cannabis farmer, 2019. 

Land use change is a global conservation concern, and the dynamics 
that drive it are often complex, involving the interaction of cultural, 

economic, historical, political, and environmental forces (Ellis et al., 
2013; Foley, Defries, Asner, Barford, Bonan, Carpenter, & Snyder, 
2005). To describe or predict land use change dynamics, it is therefore 
important to account for both social and ecological drivers and to 
consider land use as part of a social-ecological system (Ostrom, 2009; 
Turner, Lambin, & Reenberg, 2007). This is often done by integrating 
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quantitative and qualitative methods (Bennett et al., 2017; Kinnebrew, 
Shoffner, Farah-Pérez, Mills-Novoa, & Siegel, 2021). Interdisciplinary 
approaches are increasingly recognized as necessary to develop effective 
policies, management practices, or conservation outreach targeting land 
use change, and have been shown to produce better performing models, 
as well as more nuanced system understanding (Bennett et al., 2017; 
Kinnebrew et al., 2021; Siegel et al., 2022). 

Integrating a more complete social-ecological context into models of 
land use presents multiple challenges. First, it requires an in-depth un-
derstanding of the system to be modeled (Turner et al., 2007). The 
second major challenge to integrating social and ecological un-
derstandings into land use models is that some potential drivers may not 
readily lend themselves to quantitative analysis (Kinnebrew et al., 
2021). The transformation of qualitative knowledge into quantitative 
data is an inherent challenge for many interdisciplinary studies that 
attempt to merge opposing ontologies. For example, translating atti-
tudes or perceptions into numerical data is a longstanding dilemma in 
quantitative social science where doing so risks losing context and being 
misunderstood (Stockemer, 2019). Nonetheless, integrating environ-
mental modeling with social, economic and political drivers will 
enhance our understanding of system dynamics (Bloemraad, 2007; 
Lamarque et al., 2013; Siegel et al., 2022). 

An example of a complex social-ecological system that has under-
gone rapid land use change is rural outdoor cannabis farming in the 
Western US. The boom in outdoor cannabis farming corresponds to 
county and state-level legalization initiatives in cannabis production, 
which via the formalization process created a rapid development fron-
tier (Butsic, Carah, Baumann, Stephens, & Brenner, 2018; Dillis et al., 
2021). For decades, outdoor cannabis was grown illicitly, often in rural, 
remote areas. When legalization occurred, production in those same 
“legacy” regions rapidly expanded (Dillis et al., 2021). 

Outdoor cannabis production in legacy regions is unique from other 
forms of traditional agriculture and functions as a closely tied social- 
ecological system. In these small-scale (<1 acre, or 4,047 m2) 
cannabis systems, the history of illicit farming lays a foundation for 
production practices that are vastly different from crops that did not 
have to be concealed, or that were grown following standardized agri-
cultural practices across an industry (Corva, 2014). Given the continued 
barriers to bringing legacy farmers into legalized cannabis systems and 
the existence and persistence of illicit markets, historical context is likely 
to influence current growing patterns, even as they move into licit 
markets and expand on private lands (Bodwitch et al., 2019; Bodwitch, 
Polson, Biber, Hickey, & Butsic, 2021; Polson, Bodwitch, Biber, Butsic, & 
Grantham, 2023). In addition to historical practices that initiated the 
industry, there are other factors that likely influence whether, where, 
and how cannabis is produced, including federal, state, and local regu-
lation and enforcement, social acceptance of cannabis within a region, 
access to education and communication of production practices among 
growing communities, short- and long-term economic tradeoffs, and 
others. These factors will influence the spatial distribution and pre-
dominant production practices of cannabis over time, which could shift 
the proximity of cannabis to terrestrial and aquatic wildlife habitats, or 
alter cannabis impacts on the local environment (Parker-Shames et al., 
2022). These perceived or actual environmental impacts from cannabis 
can feed back into cannabis land use via shifts in attitudes that could 
lead to voluntary changes of production practices, increased enforce-
ment, regulatory changes, or shifts in community acceptance for local 
production (for an example of local environmentally-based cannabis 
policy advocacy, see Hall, 2022). 

In some of these rural, legacy-production regions, cannabis produc-
tion on private lands can transform development patterns at a regional 
scale (Butsic et al., 2018; Butsic, Schwab, Baumann, & Brenner, 2017; 
Parker-Shames et al., 2022). This development frontier can foster new 
cultural, economic, and demographic dynamics (Polson & Bodwitch, 
2021; Polson, 2015). Importantly, these new patterns of land use also 
incite concerns for ecological impact related to habitat fragmentation or 

degradation, potential effects on freshwater quality/availability, and 
direct or indirect effects on wildlife populations (Wartenberg et al., 
2021). In turn, these environmental concerns often manifest as regula-
tory barriers to legal market access (Polson & Bodwitch, 2021; Polson 
et al., 2023). 

For farmers and policy makers to understand, reduce, or mitigate 
potential environmental impacts and plan equitable policy responses, it 
is important to identify the social and ecological factors that drive 
cannabis development on private lands across space and time. However, 
federal restrictions on research funding to study cannabis (due to its 
designation as an illicit crop) have meant that there are few studies to 
draw on for characterizing patterns or trends in cannabis production, 
particularly on private lands (Short Gianotti, Harrower, Baird, & Sepa-
niak, 2017). Given the lack of formal research on the fledgling recrea-
tional cannabis industry, those who understand the industry best are 
likely those engaged in it directly. Thus, interviews of cannabis farmers 
may be a particularly valuable approach for identifying and under-
standing potential drivers of cannabis land use. Understanding why 
farmers choose to cultivate at particular sites may help lawmakers craft 
and prioritize appropriate regulations for licensed cannabis. Addition-
ally, spatial distribution and socio-cultural drivers are important for 
understanding where risks of environmental impact may arise, and for 
predicting the future trajectory of the cannabis industry. However, there 
remain many challenges to understanding drivers of cannabis develop-
ment in these complex systems. 

Previous attempts to assess the drivers of cannabis land use or predict 
the current or future distribution of cannabis production have relied 
heavily on biophysical and bioclimatic models, using variables such as 
slope, forest land cover, distance to streams, aspect, canopy cover, and 
precipitation (Butsic et al., 2018, 2017; Wengert, Higley, Gabriel, 
Rustigian-Romsos, Spencer, Clifford, & Thompson, 2021). These models 
have demonstrated that compared to other forms of farming, cannabis is 
generally less influenced or predicted by biophysical variables (Butsic 
et al., 2017). This is unsurprising, however, given that social and cul-
tural variables are likely to profoundly shape the spatial distribution of 
cannabis production. For example, depending on the production style, a 
cannabis farmer might forgo a less biophysically ideal production area in 
order to stay concealed, or to grow near hospitable neighbors or close to 
other cannabis farmers with whom they can share labor or knowledge. 
Thus, social variables may be relatively more predictive of cannabis 
industry dynamics than biophysical variables. Ultimately, bridging so-
cial and ecological knowledge may be key to understanding the spatial 
dynamics of cannabis land use. 

In this study, our goal was to identify, assess, and contextualize po-
tential drivers of farmers’ decisions to cultivate private land for cannabis 
production in Josephine County, Oregon, between pre- and post- 
recreational legalization (2013/2014 and 2016), using both sociologi-
cal and environmental variables. We conducted interviews with 
cannabis farmers to generate a list of sociological and ecological cova-
riates for models of cannabis distribution and development early in the 
process of recreational legalization. Our method for addressing issues 
around the translatability of qualitative to quantitative data was to 
mitigate risk of misinterpretation by only looking at drivers conducive to 
quantitative modeling, while those that were less conducive were used 
to help interpret the results. We supported our driver selection with 
insights from existing literature on cannabis production, and the lead 
author’s experience living in Josephine County for two years during data 
collection. Our objectives were to:  

1. Interview cannabis farmers to: i) identify potential drivers of 
cannabis land use distribution and change; ii) identify which po-
tential drivers were most conducive to quantitative modeling, and 
which were not.  

2. Using the quantifiable variables, model drivers of cannabis land use 
distribution in an early stage of recreational legalization. Model 
drivers of cannabis land use change pre- and post-legalization. 
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3. Interpret and contextualize modeling results using the cannabis 
farmer interviews, particularly the qualitative data that were less 
amenable to modeling. 

Finally, we discuss the environmental and policy implications of 
cannabis land use change based on cannabis farmer environmental 
concerns and knowledge. 

This paper outlines an approach that may be useful for other mixed- 
methods modeling of socio-ecological systems, particularly in land use 
frontiers or formalizing industries. 

Fig. 1. Map of the study area in Josephine County, Oregon. The map also includes surveyed watersheds shaded by the increase in number of plants for each 
watershed from 2013/2014 to 2016 (see Cannabis Data in Model Results). Dashed line shows the approximate split in available imagery for the pre-legalization 
timepoint (see Cannabis Data in Methods). 
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2. Methods 

2.1. Study area 

To understand cannabis land use drivers within the context of a rapid 
policy shift, we focused our study on Josephine County in Southern 
Oregon (4250 km2) (Fig. 1). Josephine County is an ideal location to 
study cannabis because of the crop’s importance in the local economy 
with few other major competing non-timber agricultural commodities, 
as well as its rural location that typifies legacy cannabis production 
systems. Josephine County has a long history of illicit and medical 
cannabis cultivation and has an active presence in the growing legal 
industry in Oregon (Parker-Shames et al., 2022; Smith, Powell, Mun-
geam, & Emmons, 2019). In addition to being an ideal example of 
cannabis farming in this region, there were two logistical reasons for 
selecting Josephine County as a study site. First, recent efforts to map 
cannabis farming and expansion in the region during the first season of 
recreational cannabis production provided ground-verified data on 
spatial trends. Second, one of the authors (PPS) grew up in the region, 
and thus had existing access to cannabis farming communities in the 
area. This enabled us to conduct interviews with both permitted and 
illicit producers, which required significant time to build the trust 
needed to conduct this study. 

2.2. Methodological framework 

Our research approach integrated qualitative and quantitative socio- 
ecological data. We started with the interpretation of qualitative inter-
view data, then translated findings into major themes and quantified 
potential drivers, for use in land use models (Fig. 2). This meant our 
process was partially iterative in that interview results influenced the 
design of the model methods (Fig. 2). In this section, we present an 
overview of our methodology, but have included the description of 
model drivers and covariates as a result instead of a method, since it is a 
key finding from the interview data. 

2.3. Interviews 

In order to both generate a list of potential land use drivers, and to 
interpret and contextualize model results, we conducted semi- 
structured, in-depth interviews with 14 cannabis farmers in Josephine 
County in 2019. Farmers had to be over the age of 21, but could be 
engaged in any type of cannabis production on private land, whether 
licensed or unlicensed. Semi-structured interviews were conducted by 
the same researcher (PPS) for consistency, while living in Josephine 
County over a two-year period. We interviewed farmers about drivers of 
cannabis land use, farming practices, influences on production methods, 
and farmer connection with the land (see Appendix A). Although some 
farmers were also producing cannabis under a hemp license, we focused 

our questions on the cannabis industry because the hemp industry in 
Josephine County largely emerged after 2018, which is after the mapped 
data were collected. (Here, we use the word hemp to refer to industrial 
hemp which is a low THC variety of cannabis. In our study system, hemp 
plants are generally grown for CBD, and are similar to recreational 
cannabis plants.). 

We initially used known contacts in formal and informal cannabis 
producer networks, invited voluntary participation, and thereafter used 
a snowball recruitment method. We continued interviews until we 
reached saturation (no new major themes emerged), at which point we 
considered the number of farmers interviewed to be sufficient. Because 
of the difficulties in attaining a representative sample of all cannabis 
farmers in the region, these interviews were viewed as generative rather 
than representative of all producers in the area. 

Interviews were recorded with permission, alongside handwritten 
notes. Most interviews took place on the cannabis farm, or another 
location selected by the farmer, and often included a tour of the farm. 
Interviews typically lasted 2 h, but ranged between 1 and 8 h, depending 
on the time constraints and preferences of the interviewee. All in-
terviews were conducted under University of California, Berkeley 
Human Subjects Protocol CPHS# 2018–11-11619. Our purpose in con-
ducting interviews was largely generative. We therefore conducted an 
inductive coding process, through which we identified and summarized 
themes and concepts that arose in the interviews. We then used the 
summaries to identify potential quantitative variables (predictors) for 
our land use models, and to select key quotes that illustrate each 
emerging theme. 

2.4. Cannabis models 

2.4.1. Cannabis data 
To model drivers of cannabis land use and change over time, we 

hand-digitized cannabis production sites across Josephine County using 
Google Earth Images. At each site, we counted the number of visible 
plants in outdoor gardens, and estimated the number in covered 
greenhouses based on area. See (Parker-Shames et al., 2022) for detailed 
mapping methods. We used sites on private land that we identified with 
high confidence as being cannabis (hereafter just ‘cannabis’) with no 
minimum number of plants required for use in our models (range: 
1–1,058). Note that these mapped sites included both licensed and un-
licensed cannabis on private land parcels, though we were unable to 
distinguish license status of a given parcel. We mapped all private par-
cels in the county, providing a dataset of private parcels with and 
without detected cannabis. 

To assess change over time, we mapped an additional year of 
cannabis production prior to recreational legalization. For these maps, 
we followed the same basic protocol, using high spatial resolution 
Google Earth imagery to record location of outdoor gardens and 
greenhouses. Depending on the available year of imagery in Google 

Fig. 2. Conceptual framework for our methodological process. White rectangles represent methods, light gray boxes represent results, and dark gray circles rep-
resents interpretation or discussion. Note that the results from the interview data feed into both the methods for the modeling approach and its interpretation. 
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Earth, we used either 2013 or 2014 data. The split in available imagery 
ran North-South through Wilderville, OR, splitting regional hotspots of 
production such that the Illinois Valley was mapped in 2013, and Grants 
Pass and Williams were mapped in 2014 (Fig. 1). For the 2013/2014 
mapping, we retained the 2016 mapped sites and updated, removed, or 
added cannabis polygons as we digitized to maintain consistency across 
years. For watersheds that did not contain cannabis in 2016 (n = 27), 
they were unlikely to have cannabis in 2013/2014, so we mapped only a 
subset (n = 7) in the earlier time point to confirm the validity of this 
assumption, and then assumed that the rest were also empty. 

We summarized cannabis production data to the parcel level and 
recorded the number of cannabis sites (individual outdoor gardens or 
greenhouses), total cultivated area, and number of plants per parcel. We 
then filtered our data to include only private land parcels. 

2.4.2. Cannabis distribution modeling 
For models of cannabis distributions on private land, we used the 

post-legalization (2016) cannabis data aggregated to the parcel level, 
and filtered to private ownership. We modeled the presence or absence 
of cannabis on a given private parcel using a logistic regression with the 
‘glm’ function in R (R Core Team, 2021). We opted for a logistic 
regression rather than a Poisson due to our primary interest in the 
relationship of potential drivers to cannabis presence and note that lo-
gistic models do not require equal number of presence and absence 
(Woolridge, 2015). We selected the variables for all models based on the 
interview data (see Results and Table 1 for the included covariates and 
model equation). Many covariates are also supported by their use in 
previous studies of cannabis cultivation. 

We assessed the models using P-values, and generated predictive 
graphs for each covariate relationship using the ‘predict’ function in 
base R, holding all other covariates at their mean value. We calculated 
pseudo r-squared values for the models using the ‘r.squaredGLMM’ 
function from the package MuMIn in R (Bartoń, 2022). 

2.4.3. Land use change models 
For models of cannabis land use change, we used the post- 

legalization (2016) cannabis parcel data as above, with the addition of 
the pre-legalization (2013 or 2014) data. We used two different models 
to capture different aspects of land use change. First, we modeled new 
farm expansion. We excluded all parcels with farms present pre- 
legalization, to only capture new farms post-legalization. We used a 
logistic regression model to examine the relationship between each co-
variate and the development of a new cannabis farm (see Results for the 
model equation). 

Our second land use change model examined only the farms present 
pre-legalization (2013/2014), modeling the change in number of plants 
to post-legalization (2016). We used a gaussian regression model to 
assess the relationship between each covariate and the number of 
cannabis plants gained or lost over recreational legalization (see Results 
for the model equation). 

We assessed the models using estimated P-values, and generated 
predictive graphs for each covariate relationship using the ‘predict’ 
function in R holding all other covariates at their mean value. We 
calculated pseudo r-squared values for the models using the ‘r.squar-
edGLMM’ function from the package MuMIn in R (Bartoń, 2022). 

3. Results 

3.1. Interviews 

We interviewed 14 self-identified cannabis farmers from 10 different 
farms in Josephine County, Oregon, in 2019. All interview subjects were 
over the age of 21, and the majority were white and male. These 
cannabis farmers were engaged in a variety of markets, including per-
sonal production, medical or licensed recreational cannabis, legal hemp, 
illicit “black-market” cannabis, and combinations of the above. All 

farmers interviewed had been producing for at least three years, 
although we interviewed a mix of legacy producers (some of whom have 
been producing for 50+ years) and farmers who had started more 
recently. All farmers identified as small or medium scale producers (with 
cultivation areas typically smaller than 1 acre), and several were also 
part of formal cannabis advocacy and grower best-practice 
organizations. 

After 14 interviews, we reached a saturation point whereby no new 
themes were emerging in farmer responses, though this seemed likely 
due to similarities among farmers, rather than an indication that we had 
exhaustively summarized the perspectives of all cannabis farmers in the 
region. Below we describe some of the emerging themes from the in-
terviews as they relate to land use drivers and the context for inter-
preting model results. We then relate each theme to a hypothesized 
driver of cannabis land use distribution and change (Table 1), or indicate 
where an emerging theme did not readily translate to a quantifiable 
driver. 

3.1.1. Major themes and spatial drivers 
Below, we describe the major themes that emerged from cannabis 

farmer interviews. The first four (Connection to Community, Environ-
mental Stewardship, Regulation, and Parcel Qualities) were translated 
into model covariates, while the final two (Economics, and Future of the 
Industry) were not used for model covariates but rather provide context 
for the results. 

3.1.2. Connection to community 

“There’s always a human side to the equation I consider when making 
land use decisions.” 

One of the most common factors mentioned in farmer interviews was 
the importance of community, both in terms of their connection to other 
cannabis farmers as well as to their surrounding neighbors. For example, 
in the quote above, the farmer was describing how his relationship with 
his neighbors instilled a sense of both community and responsibility that 
translated into on-the-ground decisions he made on his farm, such as 
when or how to use grow lights. The interviewed farmers explained that 
having a good relationship with neighbors was critical for surviving in 
the industry, regardless of whether they were licensed or not. The value 
placed on neighborly relationships stems from a heterogeneity in social 
acceptance or tolerance of cannabis production, or even particular styles 
of cannabis farming. In addition, farmers described that best growing 
practices were often communicated through social networks, both on-
line and in person, and so they often relied on other cannabis farmers for 
advice or assistance. Interviewed farmers explained that cultural norms 
dictated practices, which in Josephine County were often influenced by 
legacy production styles and attitudes. Some farmers also mentioned the 
advantage of being able to help each other with labor when living close 
to other farmers. 

In translating this theme into quantitative variables for potential 
land use drivers, we focused on farmer reliance on other local cannabis 
producers. We quantified proximity to other cannabis farms by calcu-
lating the smallest non-zero distance from each parcel to the nearest 
cannabis farm both pre- and post-legalization, using the ‘st_nn’ function 
from the nngeo package for R (Dorman, 2022). This package calculates 
the k-nearest neighbor distance between features. We calculated a large 
number (k = 17) of neighbor distances for each parcel, then selected the 
minimum distance excluding all zero values. 

We also attempted to estimate neighborhood tolerance for cannabis 
farming. To do so, we used the density of cannabis within a 1 km radius 
around each parcel both pre- and post-legalization as our spatial proxy. 
Cannabis production in Josephine County is clustered at multiple spatial 
scales (Parker-Shames et al., 2022) and so any distance threshold that 
represents a localized area might be appropriate, but we chose 1 km 
because this generally encompasses a local neighborhood. Using the sf 
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package in R, we generated buffers around parcel centroids, intersected 
them with centroids of cannabis sites, and then converted the count to 
density by dividing by buffer area. 

3.1.3. Environmental stewardship 

“It’s the big corporations that are f**king this land. We’re taking care of 
it.” 

All farmers interviewed expressed personal values related to envi-
ronmental stewardship. In the context of the quote above, the farmer 
was comparing his impact from cannabis farming to nearby clearcut 
logging, and explaining his deep conviction that his style of land use was 
environmentally sustainable compared to larger industrial and extrac-
tive land uses. In the opening quote from the introduction, “Money 
actually does grow on trees out here, and that’s a blessing,” a different 
farmer expressed similar sentiments, connecting his farming to both 
nature and livelihood/profit, while expressing gratitude that the place 
itself, Josephine County, enabled that relationship. Many of the inter-
viewed farmers explained that their motivations for growing cannabis 
stemmed from a desire to connect with the land or nature, although only 
a few had been farmers before cultivating cannabis. Interviewees often 
mentioned that the ruralness of Josephine County was an attraction 
because of its biodiversity. Many farmers reported personal connections 
with and fondness for the wildlife on their production sites. Many also 
expressed concerns about ecological damage from the cannabis in-
dustry. For example, farmers highlighted concerns about pesticide or 
rodenticide use, trash/plastic waste, animals caught in netting, water 
pollution (and associated algae blooms), excessive water withdrawals, 
waterway diversion, imported soils, clearcuts, and paving. Multiple 
farmers raised concerns that the state or county regulatory process did 
not support environmental stewardship, and some expressed concerns 
that following regulations made it more difficult to practice what they 
saw as sustainable or regenerative farming practices such as intercrop-
ping, or crop rotation. The interviewed farmers generally considered 
themselves as having less impactful growing practices than other 
cannabis producers in the region, while farmer descriptions and farm 
visits both demonstrated a wide variety of production practices across 

all farms. Farmers mentioned the need for more crop research, 
information-sharing, and stronger norms around acceptable environ-
mental practices. 

This theme did not translate easily into quantifiable spatial proxies, 
and we were unable to find a suitable proxy for site-level stewardship 
practices. Instead, we focused on farmers’ expressed desire to grow in 
remote areas because of the opportunity to work the land in proximity to 
wild flora and fauna as the basis for their stewardship of these remote 
sites. It is also possible, however, that farmers seek remoteness to avoid 
detection (see Regulation below). We quantified this remoteness (i.e. 
ruralness) using the Human Footprint layer, which combines data on the 
built environment, population density, night-time lights, crop and 
pasture lands, roads and railways, and navigable waterways to create an 
index of direct and indirect human pressures at a 1 km2 resolution. We 
extracted the mean human impact value for each parcel using the 
exactextractr package in R (Baston, 2021). 

3.1.4. Regulation 

“Some regulations dictate what we do, but it’s a case-by-case basis.” 

There was a wide range of responses regarding the importance of 
regulation for farmer decision-making. In the quote above, the farmer 
explained how some aspects of regulation (such as the track and trace 
systems) were more impactful to his daily farm management decisions 
than others as he navigated the licensed industry. Most farmers did not 
perceive that enforcement influenced their land use decisions, although 
the farmers navigating the licensed recreational market said that regu-
lations were often their first consideration. One unlicensed farmer 
compared law enforcement to wildfire risk, explaining both as factors 
that were constant background risks but ultimately outside of his con-
trol. There was widespread confusion and frustration with the regula-
tions around recreational cannabis. Multiple farmers said that they 
started growing hemp, or had considered growing hemp, to avoid the 
legal hurdles of recreational cannabis. Others raised questions about 
what the new recreational market would mean for medical producers. 
Some interviewees mentioned that a rural location made things easier 
from an enforcement perspective, particularly in avoiding the Grants 

Table 1 
Hypothesized drivers of cannabis land use distribution and/or change generated from interviews of cannabis farmers. See interview results for more detailed 
justifications.  

Potential Driver Spatial Proxy and hypothesized direction (− /+) Justification Source or method 

Proximity to other 
cannabis farms 

Distcann: Distance to next nearest cannabis farm (− ) Nearby support of other cannabis farmers desired Calculated for this study based on 2013/ 
2014 and 2016 cannabis data 

Supportive 
community 
attitudes 

Densitycann: Density of farms within 1 km radius (+) Neighborhood acceptance critical for long term 
success 

Calculated for this study based on 2013/ 
2014 and 2016 cannabis data 

Ruralness HFP: Human Footprint (− ) Remoteness desired for general connection to rural 
spaces 

2009 Human Footprint (Venter, Sanderson, 
Magrach, Allan, Beher, Jones, & Watson, 
2016) 

Zoning ZoningFarm: Whether or not a parcel is zoned for 
farming (+) 

Farm zoned parcels preferred County taxlots (Josephine County 2018) 

Distance from law 
enforcement 

DistGP: Distance from Grants Pass Sheriff’s office (− ) 
(not included in final models due to correlation with 
HFP) 

Reduced enforcement pressure (for both licensed 
and unlicensed farmers) 

Straight line distance from Grants Pass 
(using Sheriff’s Office as point location) 

Parcel size Areaparcel: Parcel area (m2) (+) Larger parcels more desired for buffer space and 
privacy 

County taxlots (Josephine County 2018) 

Easily cleared or 
open land cover 

Clearable: Open land covers for 2011 or 2013 (+) Open area to develop farm on, reduced labor for 
clearing land desired when selecting parcel 

NLCD 2011 and 2013 (Dewitz, 2019) 

Elevation Elevationmax: Maximum elevation (− ) Intermediate elevation preferred for optimal 
growing conditions, maximum likely to be limiting 
factor 

DEM 10 m 

Roughness Roughnessmax: Maximum roughness (− ) Available flat land preferred to reduce terracing 
labor 

Derived from DEM 10 m 

Access to sunlight Aspectsouth: South-facing aspect (+) Cannabis plants will grow better with access to 
sunlight, which is enhanced on south-facing slopes 

Derived from DEM 10 m 

Proximity to water Distrivers: Distance to rivers and streams (− ) Water needed for irrigation, assuming proximity 
incorporates use for both licensed and unlicensed 
farmers 

NHDplus (U.S. Geological Survey, 2018)  
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Pass area (the county seat and law enforcement center). Even those who 
were attempting to navigate the legal industry expressed that it was 
useful to be less closely monitored because of the difficulty in complying 
with all regulations, the time needed to demonstrate compliance, or fear 
that they may be breaking rules without knowing it. 

To translate the preference for distance from law enforcement into a 
spatial driver, we estimated this both with ruralness (see Environmental 
Stewardship above) as well as the straight line distance from the Grants 
Pass Sheriff’s office to each parcel using the sf package in R (Pebesma, 
2018). However, because these measurements were significantly 
correlated, we ultimately dropped distance to law enforcement as a 
variable in our models. Note that because remoteness is used for both a 
connection to rural spaces and for avoidance of law enforcement, we are 
unable to separate their effects in our results. 

There were also a number of regulatory designations that cannabis 
farmers discussed as important when considering where to grow. Water 
rights and zoning were some of the most frequently mentioned. Water 
rights were considered critical for legal production but specifics of 
parcel-level rights were often hard to acquire or interpret. Water rights 
were not generally discussed by unlicensed farmers, but water access, 
storage, and application were all considered critical. Because of the 
mixed response to regulated water use, we assessed water access as part 
of Parcel Qualities below, rather than in Regulation. 

In Oregon, counties, and even cities, were allowed to create addi-
tional local restrictions on cannabis, many of which were in flux during 
the course of the study. The shifting policies in Josephine County around 
zoning restrictions, particularly for Rural Residential zones, led farmers 
to identify exclusive farm zoned parcels (EF) as the safest and highest 
quality lands for cannabis production. One farmer also mentioned Farm 
Resource (FR) zoned properties. To translate this into a land use driver, 
we created a binary variable that assigned a ‘1′ to each parcel that was 
zoned for either EF (Exclusive Farm) or FR (Farm Resource) zones and a 
0 for those that did not. Zoning information (dated 2018) was provided 
by Josephine County (see Appendix B for a zoning summary). 

3.1.5. Parcel qualities 

“Why don’t you just buy land that doesn’t have trees on it to begin with?” 

Farmers identified multiple biophysical properties of parcels that 
factored into decisions about where to produce cannabis. In the quote 
above, the farmer was expressing confusion as to why some cannabis 
producers selected parcels that required a large labor input to clear or 
terrace land to begin farming, when other, more open parcels seemed to 
him to be a more ideal choice. In addition to open/cleared areas with 
access to sunlight, some of the other factors mentioned included rela-
tively flat slopes, and medium elevation zones as helpful qualities for 
production. Several interviewees mentioned that the climate in Jose-
phine County was ideal for cannabis, while others expressed the belief 
that it was primarily grown in the region because of history and culture. 
One farmer mentioned that owning versus renting land for cannabis 
farming might change the relative importance of the physical factors of a 
parcel that a farmer prioritizes, as might living on the property where 
they are growing, but they weren’t sure how often producers rented 
versus owned their farms. 

We translated the above biophysical parcel qualities into multiple 
spatial drivers. First, we grouped land cover classes (NLCD 2011 and 
2013) into a binary variable based on ease of clearing for crops. We 
included the following classifications in the easy to clear category, based 
on land cover descriptions: Developed Low Intensity, Grassland/Her-
baceous, Developed Open Space, Pasture/Hay, Barren Land, and Culti-
vated Crops. In addition to clearing, we created a binary variable to 
describe if the majority aspect of a parcel was southern-facing, to reflect 
parcels with greater sunlight access, using the raster package in R. We 
also used maximum elevation per parcel to capture elevation as a po-
tential limiting factor, using a 10 m DEM and the exactextractr package 

in R (Baston, 2021). We calculated maximum roughness to capture po-
tential preference for overall flat parcels using the ‘terrain’ function in 
the raster package in R (Hijmans, 2022). In the raster package, rough-
ness measures the difference between the maximum and minimum 
elevation value of a cell and its surrounding cells. 

Farmers discussed parcel size as a potential factor that could influ-
ence where to locate a cannabis farm. One farmer mentioned that par-
cels in Josephine County were smaller than in other regions where he 
had farmed cannabis, while other farmers implied that they had looked 
for larger parcels within the county. Multiple farmers discussed the 
importance of space on the property, whether directly for cannabis 
production (e.g., space for greenhouses, gardens, drying sheds, water 
storage or ponds, etc.), multiple kinds of cannabis production (e.g., 
space for both a licensed and unlicensed garden, or for both recreational 
or medical cannabis and hemp), or for other reasons, for example to 
provide a treed buffer or space for a fence between the farm and its 
neighbors, to have enough room for setback distances required by 
regulation, or to accommodate other land uses on the same parcel (e.g., 
vegetable farming, homestead, commercial timber, etc.). To translate 
this into a spatial driver, we used the calculated area of each parcel 
polygon using the sf package in R. 

Not all farmers interviewed operated licensed production sites, and 
many were in a “gray zone” of legality, and so for some, proximity to 
water on a parcel was more important than specific water rights. Most 
farmers mentioned that in 2016, regulations on cannabis farming were 
not yet enforced, and so access to water at that time point might have 
had more to do with physical parcel qualities than legal access. Because 
of this, we used proximity of farmed parcels to water as a spatial driver 
instead of specific water rights on a given parcel for our model. We used 
the NHDplus flowlines database, filtering to include rivers and streams, 
as well as artificial paths (U.S. Geological Survey, 2018). We then 
calculated distances using the sf package in R (Pebesma, 2018). 

While some farmers mentioned that soil quality (for example, PH, or 
whether the parcel had previously been grazed or farmed) mattered to 
them when selecting a site, most said that existing soil was not a primary 
concern for them, or for most farmers that they knew. Instead, most 
reported that the industry standard was to grow with imported soils in 
grow bags or boxes. Some farmers did report growing in native soil, but 
that they still had to add amendments to do so. Given the mixed com-
ments on soil quality, we did not include this as a potential spatial 
driver. 

3.1.6. Economics 

“Most people are just looking at the economics… If it weren’t so hard to 
make a living and support a family [by growing sustainably], I think most 
people would be open to it.” 

While all farmers interviewed discussed the difficulties of supporting 
themselves or their families economically in the cannabis industry, we 
were unable to identify quantifiable, spatially-explicit drivers corre-
sponding to the scale at which economics operates for most producers. 
None of the farmers specifically mentioned land prices as a factor in 
their decision making, and we did not ultimately include any drivers 
based on this theme. In the quote above, the farmer expressed that it was 
difficult to make a secure living with cannabis farming, which often 
made it risky to attempt new sustainable techniques. In this case, the 
farmer was also explaining that in their own attempts to grow with 
lowered environmental impacts in mind, it sometimes meant an income 
tradeoff. Thus, farmers reported that economics primarily influenced 
their decisions on specific land use practices, as well as whether or not to 
enter the licensed market. The farmers did see broader drivers of supply 
and demand being important for the industry as a whole, but for their 
individual decisions, economics was influential in deciding how much to 
grow, how much to spend on equipment or labor, how to balance 
different types of production (e.g., hemp versus cannabis), or when they 
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might have to leave the industry altogether. Most expressed that the 
industry, both licensed and unlicensed, was full of uncertainty, and 
economic vulnerability. Many expressed concerns that when operating 
under economic uncertainty, farmers were unlikely to take a risk on 
more sustainable or less ecologically-impactful farming practices. 

3.1.7. Future of the industry 

“Our county has a long history of boom-bust, with the gold and timber. 
And the west coast in general has a boom bust history with oil, gold, and 
timber. And I see this next boom bust economy is this Marijuana 
industry.” 

All interviewed farmers said that the cannabis farming industry had 
expanded with legalization and expressed concerns or uncertainty for 
the future of the industry. In the quote above, the farmer was looking at 
their own long history in the cannabis industry and seeing an uncertain 
future, and comparing it to the other major land-based industry cycles in 
Josephine County. Most interviewed farmers compared the cannabis 
industry to the gold rush and expressed concern that its rapid increase 
might not be sustained in the long term. Many farmers, both legacy 
producers that associated themselves with hippie culture or renegade 
counter-culturalists, as well as younger farmers that came from more 
indoor or urban production cultures, described a shift in the industry 
from one that was culturally or spiritually motivated to one that is pri-
marily economically driven. They expressed concerns that the indus-
trialization of cannabis with the legal market would lead to further 
ecological harm, while the money involved in the black market would 
encourage other criminal activities (e.g., sex trafficking or labor abuse). 

Many farmers expressed a desire for more research and education, 
particularly around best growing practices. Most of those interviewed 
agreed that there was a general lack of knowledge or research-supported 
farming practices. While few were optimistic about the future, most 
expressed a belief in small-scale farms to produce in a way that was less 
harmful to the environment than conventional agriculture, and for 
persistence of a “craft cannabis” market. 

3.2. Model results 

3.2.1. Cannabis models 
Based on the interview themes, we selected covariates for our final 

models. The following model represents the covariate relationships with 
the distribution of cannabis land use in 2016. 

Cpresence = B0 + B1 * Areaparcel + B2 * HFP + B3 * Distcann + B4 * 
Densitycann + B5 * Clearable + B6 * ZoningFarm + B7 * Elevationmax + B8 * 
Roughnessmax + B9 * Distrivers + B10 * Aspectsouth. 

Where the response variable Cpresence is binary for cannabis presence, 
Areaparcel is the area of each private land parcel log-transformed to 
reduce skew, and HFP is the average Human Footprint value extracted 
for each parcel and estimates remoteness, Distcann is the non-zero nearest 
distance to the next cannabis farm in 2016 with a square-root trans-
formation to reduce skew. Densitycann is the density of cannabis sites 
within a 1 km radius buffer in 2016 with a square-root transformation to 
reduce skew. Clearable is a binary variable for whether or not the par-
cel’s predominant 2013 land cover is easily cleared, and ZoningFarm is a 
binary variable for whether or not the parcel is zoned for agriculture. 
Elevationmax is the maximum elevation of a parcel. Roughnessmax is the 
maximum roughness of a parcel with a square-root transformation to 
reduce skew. Distrivers is the distance to nearest river or stream, and 
Aspectsouth is a binary variable for whether the majority of the parcel has 
a southern aspect (between 225 and 135 degrees). 

We used the following logistic regression model to examine the 
relationship between each covariate and the development of a new 
cannabis farm: 

Cdevelopment = B0 + B1 * Areaparcel + B2 * HFP + B3 * Distcann + B4 * 
Densitycann + B5 * Clearable + B6 * ZoningFarm + B7 * Elevationmax + B8 * 

Roughnessmax + B9 * Distrivers + B10 * Aspectsouth + B11 * Year. 
Where Cdevelopment is a binary variable representing whether or not the 

parcel developed cannabis in 2016. All model variables are the same as 
in the single year model except that Distcann and Densitycann both use the 
2013/2014 cannabis data, and Clearable uses 2011 land use. Year is the 
image year (either 2013 or 2014) that the pre-legalization data was 
mapped. Note that Year is also a spatial grouping because roughly half 
the county was mapped in each time point, with 2013 encompassing the 
Illinois Valley and Selma, and 2014 covering Williams and Grants Pass 
(Fig. 1). 

We used the following gaussian regression model to assess the rela-
tionship between each covariate and the number of cannabis plants 
gained or lost over recreational legalization. 

Cchange = B0 + B1 * Areaparcel + B2 * HFP + B3 * Distcann + B4 * Den-
sitycann + B5 * Clearable + B6 * ZoningFarm + B7 * Elevationmax + B8 * 
Roughnessmax + B9 * Distrivers + B10 * Aspectsouth + B11 * Year. 

Where Cchange is the change in plant number from pre to post legal-
ization, and all variables are the same as in the land use change model 
for new farms above. 

3.2.2. Cannabis data 
We identified 1,171 parcels with cannabis pre-recreational legali-

zation (2013/2014), and 2,525 parcels post-legalization (2016), for a 
total of 35,512 plants pre-legalization and 116,162 plants post- 
legalization (Fig. 1). In the pre-legalization timepoint, 8,531 private 
parcels were mapped in 2013 in the western half of the county (550 of 
which contained cannabis), and 30,784 private parcels were mapped in 
2014 in the eastern half of the county (621 with cannabis) (see Fig. 1). 
Average values or proportions for each covariate are listed in Table 2. 

3.2.3. Cannabis distribution post-legalization 
For the single year post-legalization (2016) cannabis land use dis-

tribution model for private parcels, we found that the following hy-
pothesized drivers had a significant relationship (p < 0.01) with parcels 
that contained cannabis: larger parcels, lower human footprint, lower 
distance to nearest cannabis, higher density of local cannabis, easily 
cleared land cover, and lower distance to rivers (Table 3). All significant 
drivers performed in the direction we predicted (see Table 1). The 
relationship of human footprint, cannabis density, and distance to rivers 
were approximately linear, but area and distance to nearest cannabis 
indicated nonlinear relationships and a possible threshold effect (Fig. 3). 
The change in probability attributable to individual covariates was 
generally small (<10%), except for parcel area and density of cannabis 
(Fig. 3). 

3.2.4. Cannabis development on new parcels 
For the model of cannabis development onto new parcels post- 

legalization in 2016 (parcels that had no detected cannabis pre- 
recreational legalization in 2013/2014), we found that the following 
hypothesized drivers had a significant relationship (p < 0.01) with 
parcels that developed new cannabis: larger parcels, lower human 
footprint, lower distance to nearest cannabis, higher density of local 
cannabis, easily cleared land cover, non-farm zoned, lower elevation, 
less rough, lower distance to rivers, and mapped in 2013 (Table 4). 

All significant drivers performed in the direction we predicted (see 
Table 1), except for farm zoning, which was negatively associated with 
the development of new farms, and image year, which did not have an 
associated prediction. Distance to nearest cannabis, local cannabis 
density, parcel elevation, and distance to rivers or streams all had 
approximately linear relationships with the probability of new cannabis 
development (Fig. 4). Parcel area and roughness on the other hand had 
non-linear relationships with possible threshold effects (Fig. 4). The 
change in probability attributable to individual covariates was generally 
small (<10%), except for parcel area and human footprint (Fig. 4). 
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3.2.5. Existing pre-legalization cannabis land use trajectory 
For the model of cannabis growth or decline, we found that only 

parcel area, roughness, and image year were significantly associated 

with the change in plant count post-legalization (2016) (Table 5). All 
significant drivers performed in the direction we predicted (see Table 1), 
except image year, which did not have an associated prediction. The 
relationship of predicted change in plant count and parcel roughness 
was approximately linear, and the relationship with parcel area was 
non-linear with a possible threshold effect (Fig. 5). Parcel area was 
associated with the greatest predicted change in plant count, from a 
decrease of 25 plants to an increase of 50 (Fig. 5). 

4. Discussion 

Rural cannabis land use in the western US has traditionally been a 
difficult topic for research. In this study, we demonstrated the effec-
tiveness of an interdisciplinary approach to identify, assess, and 
contextualize drivers of cannabis land use and development. We com-
bined generative cannabis farmer interviews with three models of 
cannabis land use in Southern Oregon during the early period of recre-
ational legalization (2013–2016), to examine the relationship of spatial 
covariates with cannabis distribution, new development post- 
legalization, and plant density over time. The majority of our cova-
riates were significant in at least one model, and combined with the 
context from the farmer interviews, suggest that they are likely reliable 
predictors of land use in this system. 

Table 2 
Average or proportion values of covariates used in the cannabis land use distribution and change models.    

Parcel area 
(m2) 

Human 
footprint 

Distance to 
cannabis (m) 

Density of 
cannabis (in 1 
km) 

Elevation Roughness Distance to 
rivers (m)  

Clearable Farm 
Zoned 

South 
Facing 

Cannabis 
2013/ 
2014 

Avg 53,212  10.4  166.5  7.8 1,435.6 21.4 46.9 Prop. 34.7% 8.7% 18.6% 
Min 483  1.3  0.0  0.0 870.1 0.3 0.0 
Max 966,343  42.8  5,344.3  32.2 3,459.4 150 980.3 
Sd 94,000  7.9  339.1  6.3 337.6 22.1 114.4  

Cannabis 
2016 

Avg 60,000  10.1  160.3  8.0 1,424.2 21.6 49 Prop. 37.7% 9.3% 16.5% 
Min 244  1.3  0.0  0.0 857.8 0.3 0.0 
Max 4,160,000  45.7  14,906.8  32.5 3,492.9 150 1071 
Sd 135,578  7.8  466.8  6.4 330 22.5 113.4  

All private 
parcels 

Avg 29,900  23.1  358.8  3.5 1,190 14.6 105.2 Prop. 45.1% 4.0% 24.3% 
Min 1.5  1.2  0.0  0.0 653.9 0.0 0.0 
Max 9,890,000  46.3  25,884.1  32.8 6,247.6 212.2 1,120.2 
Sd 127,129  13.9  438.3  4.1 340.3 19.4 140.5  

Table 3 
Coefficient estimates for the model of cannabis land use distribution in 2016. 
Any transformations are listed in parentheses. * p < 0.05, ** p < 0.01, ***p <
0.001. Pseudo r-squared (delta) = 0.16.  

Variable Estimate (SE) 

Intercept − 6.159 (0.2686) *** 
Parcel Area (log) 0.3940 (0.02278) *** 
Average Human Footprint − 0.03923 (0.003628) *** 
Distance to nearest 2016 cannabis parcel (square-root) − 0.06761 (0.004152) *** 
Density of 2016 cannabis within 1-km radius (square- 

root) 
0.4987 (0.02763) *** 

Easily cleared 2013 land cover 0.2104 (0.05309) *** 
Farm zoning − 0.1158 (0.08836) 
Maximum Elevation 0.0001630 (0.00008721) 

* 
Roughness (square-root) − 0.001227 (0.01540) 
Distance to rivers − 0.0005793 (0.0002248) 

** 
Southern-facing aspect 0.05558 (0.06095)  

Fig. 3. Prediction graphs of the six significant covariates for cannabis land use distribution in Josephine County, OR. Note that the scale of the y-axis is different for 
each graph in order to illustrate the probability relationship of individual covariates. Error bars show the standard error. 
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4.1. Strength of interdisciplinary approach 

Previous studies examining cannabis land use distribution and 
change have relied on biophysical covariates (Butsic et al., 2018, 2017; 

Wengert et al., 2021). Building on this foundational approach for un-
derstanding cannabis spatial patterns, the addition of interview data to 
inform and contextualize models adds depth to the interpretation of 
modeling results, and generates new covariates that might otherwise be 
missed. For example, in Butsic et al. (2017), the authors noted strong 

Table 4 
Coefficient estimates of the model of new cannabis development from 2013/ 
2014 to 2016. Any transformations are listed in parentheses. * p < 0.05, ** p <
0.01, ***p < 0.001. Pseudo r-squared (delta) = 0.084.  

Variable Estimate (SE) 

Intercept − 5.444 (0.2927) *** 
Parcel Area (log) 0.4206 (0.02690) *** 
Average Human Footprint − 0.05424 (0.004483) *** 
Distance to nearest 2016 cannabis parcel (square- 

root) 
− 0.01266 (0.003213) *** 

Density of 2016 cannabis within 1-km radius (square- 
root) 

0.2950 (0.04473) *** 

Easily cleared 2013 land cover 0.3759 (0.06398) *** 
Farm zoning − 0.2371 (0.1056) ** 
Maximum Elevation − 0.0001896 (0.00009273) 

** 
Roughness (square-root) − 0.07568 (0.01803) *** 
Distance to rivers − 0.0008174 (0.0002863) 

*** 
Southern-facing aspect − 0.06056 (0.07648) 
Image year − 0.6917 (0.06289) ***  

Fig. 4. Prediction graphs of the ten significant covariates for new cannabis development. Note that the scale of the y-axis is different for each graph in order to 
illustrate the probability relationship of individual covariates. Error bars show the standard error. 

Table 5 
Coefficient estimates of the model of existing cannabis change in plant count 
from 2013/2014 to 2016. Any transformations are listed in parentheses. * p <
0.05, ** p < 0.01, ***p < 0.001. Pseudo r-squared = 0.034.  

Variable Estimate (SE) 

Intercept − 0.3777 (0.1876) ** 
Parcel Area (log) 6.780 (1.717) *** 
Average Human Footprint − 0.02121 (0.2706) 
Distance to nearest 2016 cannabis parcel (square-root) 0.1152 (0.1946) 
Density of 2016 cannabis within 1-km radius (square- 

root) 
− 3.425 (2.463) 

Easily cleared 2013 land cover 5.643 (3.713) 
Farm zoning − 4.101 (5.792) 
Maximum Elevation − 0.0008123 

(0.006414) 
Roughness (square-root) − 2.290 (1.071) ** 
Distance to rivers − 0.005536 (0.01417) 
Southern-facing aspect − 0.1651 (4.015) 
Image year − 9.898 (3.451) ***  
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Fig. 5. Relationships between predicted change in cannabis plant count on farms and three significant covariates from 2013 to 16. Note that the scale of the y-axis is 
different for each graph in order to illustrate the probability relationship of individual covariates. Error bars show the standard error. 

P. Parker-Shames et al.                                                                                                                                                                                                                        



Landscape and Urban Planning 237 (2023) 104783

12

network effects on the distribution of cannabis production, and postu-
lated that producer networks might be important in the development of 
the industry. The interview data in our current study support this 
interpretation, provide a possible explanation, and produce the same 
finding in an additional legacy production region. 

Our approach of incorporating social or cultural data into ecological 
modeling is not unique to cannabis production, and is becoming more 
common in contexts as varied as deforestation (Siegel et al., 2022), 
marine conservation (Österblom, Merrie, Metian, Boonstra, & Blenck-
ner, 2013), and human-wildlife conflict (Wilkinson et al., 2020). One 
strength of incorporating qualitative data into quantitative models is the 
ability to identify which factors may be most important to analyze, while 
simultaneously capturing nuances that may be left out or simplified in 
traditional modeling efforts. This is where interpreting drivers that we 
were not able to quantify spatially is particularly useful. The low pseudo 
r-squared values are less mysterious when we consider the level of 
nuance that we were unable to capture in our models, particularly on the 
themes of environmental stewardship, economics, and the future of the 
industry. For example, while we did not identify any economic cova-
riates functioning at the parcel level for our models, the interview data 
helped us recognize that broader economic changes are likely to influ-
ence changes in regional cannabis production over time. Another 
example was our use of local cannabis density as a proxy for supportive 
local attitudes towards cannabis farming. The interview data allows us 
to simplify a much larger concept of connection to community with this 
variable, while recognizing that in doing so, we may lose some local 
nuances – such as locations where there is a high neighborhood cannabis 
density but also strong negative community attitudes towards cannabis 
production. 

Our methods help avoid one critique of the social-ecological systems 
approach in which it can generate long lists of factors, but may struggle 
to address causal processes (Cole, Epstein, & McGinnis, 2019). Instead, 
the interview themes help suggest the mechanisms and motivations 
behind the modeled relationships. Nevertheless, because there can be 
multiple mechanisms influencing each covariate relationship, some 
caution should be taken when interpreting results. For example, our 
selection of the human footprint variable to represent remoteness is 
influenced by both farmers’ desire to connect with nature, and to avoid 
law enforcement. Below, we interpret some of the model results within 
the context of the interview themes. 

4.2. Environmental implications 

Some of the drivers identified in our study raise concerns that 
farmers may be actively selecting parcels that are in areas of greatest 
environmental sensitivity. For example, as farmers seek out more rural 
parcels, these are also likely to be ones with greater terrestrial wildlife 
habitat—in fact, as the interviews indicate, this faunal biodiversity is 
often something farmers appreciate and seek on the land in which they 
live and farm. Similarly, the preference for parcels closer to rivers and 
streams may result in negative impacts on freshwater systems. Previous 
research has illustrated a potential overlap of cannabis agriculture in 
Josephine County with terrestrial and aquatic biodiversity and our 
findings here suggest that this overlap is not incidental (Parker-Shames 
et al., 2022). It is possible that the ecological overlap observed in other 
rural cannabis-producing regions could be influenced by similar social/ 
cultural drivers (Butsic et al., 2018; Wengert et al., 2021). The signifi-
cance of ruralness and distance to freshwater in the model of new farm 
development further raises concerns that this proximity could increase 
over time. The emergent theme of connection to community, and the 
strength of its associated drivers for cannabis distribution (distance to 
nearest cannabis farm and local cannabis density) illustrated the 
network reliance of cannabis farmers, which further suggests that 
development over time is likely to occur in areas that are current 
cannabis hotspots. 

The context provided by the interview data suggests that some of the 

same motivations leading farmers to grow in rural areas may also pro-
vide opportunities to mitigate potential environmental harm. While our 
sample of farmer perspectives is relatively narrow, they all expressed 
strong environmental stewardship values. Similarly, other studies from 
California have identified commitments to environmental practices 
among outdoor cannabis farmers (Bodwitch et al., 2021; Polson & 
Bodwitch, 2021; Polson et al., 2023). These values alone do not mean 
that private land cannabis farming has a low environmental footprint — 
the farmers themselves even expressed concerns over the impacts of the 
industry. Rather, environmental stewardship values, combined with 
farmer concerns about the lack of education on best management 
practices for cannabis, implies that there is a research, education, and 
outreach gap for sustainable cannabis farming. This gap is one that re-
searchers have repeatedly noted (Carah et al., 2015; Short Gianotti et al., 
2017; Wartenberg et al., 2021). Moreover, in their connection to com-
munity, farmers explained that they rely heavily on learning from other 
farmers’ practices. Thus, there may also be opportunities to enforce 
conservation-minded practices via cultural dissemination to receptive 
farming communities. 

4.3. The future of the cannabis industry in Josephine County 

Our land use models illustrate a rapidly expanding cannabis farming 
industry, with a 116% increase in parcels with cannabis, and a 227% 
increase in plant count over 2–3 years from pre- to post-recreational 
legalization county-wide. Despite this rapid increase in cannabis pro-
duction, most interviewed farmers were not optimistic about the future 
of the industry, with frequent comparisons to other “boom-bust” natural 
resource trajectories. Moreover, many farmers also described an in-
dustry that was currently unpredictable, difficult to navigate (particu-
larly in the licensed recreational system), and unlikely to result in long 
term financial stability. This disconnect between the farmers’ percep-
tions of the industry compared with its rapid expansion could mean that 
the specific type of producers we interviewed (mostly small-scale private 
land outdoor or mixed-light farmers) were not benefitting from the in-
dustry increase that accompanied legalization. Other research on small 
scale cannabis producers from northern California supports this inter-
pretation (Bodwitch et al., 2019, 2021). It is also possible that 
landscape-scale industry change does not translate to the scale of an 
individual farm. If this is the case, it might help explain why the model of 
change in plant count had the fewest significant predictors—rather than 
being a more simplified process, it might instead be that the drivers for 
farms that existed before legalization are highly individualized or 
localized. 

Despite the uncertainty surrounding the trajectory of legacy cannabis 
farms, the models for new cannabis development provide insights into 
predicting the growth of the industry. While we did not project our 
predictions into the future, due in part to large policy changes that were 
not explicitly addressed in our interviews or models (e.g., 2018 federal 
hemp legalization, and a three year pause on issuing new licenses in 
Oregon), our results do provide a baseline and contextualized under-
standing that could be used for future predictions. For example, based on 
farmer descriptions for why they may seek out large and rural parcels, it 
is unlikely that the strength of those drivers would decrease over time. 
On the other hand, farmers’ stated preference for farm-zoned parcels, 
which by contrast ended up as a significant driver in the opposite di-
rection for new farm development, might be more likely to change over 
time as a potential driver due to shifts in regulation, enforcement, or 
social pressures for those renting/selling farm zoned parcels, particu-
larly as these zones are a small proportion of all private parcels (see 
Appendix B). 

5. Limitations 

While our results are broadly useful for understanding cannabis 
landscapes in southern Oregon, there are many levels of complexity that 
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are not captured by the models. For example, we treat cannabis agri-
culture as a single entity for these models, while in reality it contains a 
diversity of production styles and regulatory statuses. It is likely that 
many of the drivers that were successful in explaining meaningful 
amounts of variance in the models (for example, parcel area) were 
important for all or most cannabis farms in the region, but for other 
drivers, their relationship may be dependent on production type. It is 
entirely likely that a large-scale licensed hemp farmer and a small-scale 
unlicensed cannabis farmer will reveal different drivers of their land use. 
Similarly, whether a farmer owns their own land or rents it, or whether a 
farmer lives on site or off, could also change the relationship with po-
tential drivers. While we did not have detailed information on each 
cannabis producer at the county level to classify or group production 
styles, this would be an important avenue for future research. 

Future research would also benefit from added timepoints, particu-
larly after the 2018 federal hemp legalization. In addition, this study was 
largely confined to a small number of small-scale farmers, most of whom 
reported that they had been cultivating for longer, and in a more 
intentional and environmentally conscious manner than the majority of 
farmers in the county. Small or biased interview pools may fail to un-
cover the most important drivers of cannabis land use, or farmers 
themselves may be unable or unwilling to articulate the drivers that are 
most relevant to their landscape-scale decision-making. For example, a 
broader interview pool might uncover more spatially-explicit economic 
drivers for individual farms, or nuances in how the demographics of 
individual farmers (e.g. race, gender, etc.) influences their relationship 
with drivers. Thus, an expanded interview or focus group data collection 
process might reveal new drivers that would be relevant for other pro-
duction styles. Additionally, iterative feedback on model drivers from 
study participants would likely strengthen the identification and quan-
tification of drivers. In the case of this study, participant feedback on 
final model covariates was complicated by the COVID-19 pandemic, but 
future research should seek direct participant feedback on the covariate 
selection process. 

The relatively low pseudo r-squared values for our models suggests 
that there may be additional drivers functioning in this system, which 
extended interviews could help uncover. Our study focused on private 
land production, but it is important to remember that public land pro-
duction also occurs in this area (e.g., Wengert et al., 2021) and in-
fluences not only the local environment, but the public perceptions of 
cannabis in the region. Incorporating the links between public and pri-
vate industries might strengthen our understanding of these systems. 
Similarly, linking different scales of drivers would be a valuable next 
step. The interview data indicates that the southern Oregon industry is 
tied to regional and national markets (e.g., many Oregon farmers 
learned growing techniques in northern California, or moved to Oregon 
from other states that are perceived to be less receptive to cannabis 
farming), and that much of the economic decisions are either very fine 
scale at the level of the farm, or broader scale at the level of the state or 
nation. Within the scale of Josephine County, the significant effect of 
mapped year (Fig. 4) which is also confounded as a spatial variable, 
implies that there may also be different dynamics in the two halves of 
the county that were mapped at different timepoints (Fig. 1). Although it 
did not directly emerge in the interviews, while living in Josephine 
County, PPS observed different local approaches to integrating cannabis 
farmers into the community in Williams (in the East) as opposed to the 
Illinois Valley (in the West), with different social expectations, 
communication with neighbors, and regional production practices. This 
in turn could change how each region develops. This is an example of a 
secondary way in which the observations that occur during the inter-
view process can assist with model interpretation. Further research on 
differences in local policies, community standards, or other regional 
differences might elucidate this pattern. Capturing interrelated dy-
namics such as local to county-wide processes would require a complex 
modeling approach but might lend insights into multi-scalar drivers. 

6. Conclusions 

This study demonstrates the strength of an interdisciplinary 
approach when attempting to understand the socio-ecological dynamics 
of cannabis land use. Future research on cannabis will continue to 
benefit from cross-disciplinary collaboration. Our research may also be 
of use for those making policy or conservation management decisions for 
cannabis land use and conservation. These conservation-relevant de-
cisions should be based in an understanding of land use drivers, and as 
our research demonstrates, discussions with cannabis farmers them-
selves are likely to lend a better understanding of the dynamics under-
lying land use drivers. We therefore recommend policymakers consult 
with cannabis farmers in the creation or modification of regulations, to 
avoid unintended consequences and achieve intended conservation 
goals. Finally, the interview results indicate that education and outreach 
may be underused tools for conservation with cannabis. Many inter-
viewed farmers expressed a desire to learn more about sustainable 
farming. Education and outreach programs on best management prac-
tices for reducing environmental impacts of cannabis production, 
particularly those that provide funding for interventions, could take 
advantage of network-reliant farming communities, and existing envi-
ronmental stewardship values. In the long run, these approaches may 
provide a useful alternative or supplement to enforcement-based efforts 
that have had mixed effectiveness historically (Corva, 2014). 
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Kinnebrew, E., Shoffner, E., Farah-Pérez, A., Mills-Novoa, M., & Siegel, K. (2021). 
Approaches to interdisciplinary mixed methods research in land-change science and 
environmental management. Conservation Biology, 35(1), 130–141. https://doi.org/ 
10.1111/cobi.13642 

Lamarque, P., Artaux, A., Barnaud, C., Dobremez, L., Nettier, B., & Lavorel, S. (2013). 
Taking into account farmers’ decision making to map fine-scale land management 
adaptation to climate and socio-economic scenarios. Landscape and Urban Planning, 
119, 147–157. https://doi.org/10.1016/j.landurbplan.2013.07.012 
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